머신러닝 모델에서의 coef와 intercept는 주로 선형 모델에서 사용되는 용어입니다. 주로 선형 회귀와 로지스틱 회귀에서 나타나는데, 이들은 입력 변수와 목표 변수 간의 관계를 모델링하는데 사용됩니다. coef (계수): coef는 회귀 모델에서 각 입력 변수의 계수를 나타냅니다. 선형 회귀의 경우, y = b0 + b1*x1 + b2*x2 + ... + bn*xn에서 b1, b2, ..., bn이 coef에 해당합니다. 로지스틱 회귀의 경우, 이진 분류의 경우 y = b0 + b1*x1 + b2*x2 + ... + bn*xn에서도 선형 회귀와 같이 계수가 적용되며, 다중 클래스 분류의 경우 각 클래스에 대한 계수가 있습니다. 중요성: 계수는 해당 입력 변수가 모델 예측에 얼마나 영향을 미치는지를 ..